
Quick Starting
Summarization
This chapter introduces how to use the emulator of TOPICE quickly.

Compiling Source and Debugging
Creating a New Project
Select main menu “Project”, then choose the submenu “New” to create a new
project. The project file has the name with extension “.prj”. The project file
must be put at the same subdirectory as the source files. The path and file
name should be DOS compatible.

(picture 1)
●Project Name
Type the name (with path) for the new project.
●Browse
Display the “Browse Project” dialog box to select or change the name (with
path).
●OK
Click to open the “Edit Project” dialog box to create the project files.

Edit a New Project
Select main menu “Project”, then choose the submenu “Edit” to edit a project.
The files in the project must be put at the same directory of the project
file.(The C51 file has the name with extension “.c”, the assemble file with
extension “.asm” and PL/M51 file with extension “.plm”)

(picture 2)
●File Name
List files with the filename extension selected in the “File Type” list box.
●Path
Select the path you want to contain in the project. After double-clicking on a
path, all files with the filename extension selected in the “File Type” list box
will be shown in the File Name box.
●File Type
Select the type of file you want to see in the File Name box.
●File in Project
List all files selected from File Name box
●Add
Add the highlighted item in the File Name box project box.
●Delete
Remove the highlighted file in Files in Project box from current project.

Setting Compiler Options
Select main menu “Option”, then choose the submenu “Environment” to set
compiler options. The needed files must be copied to the special path, which
include the Assembler named “A51.EXE”, C Compiler named “C51.EXE”,
PL/M51 Compiler named “PLM51.EXE”, Linker named “L51.EXE”, etc.

(picture 3)
●Assembler Path
Type the path that contains the Assembler named “A51.EXE”.
●C Compiler Path
Type the path that contains the C Compiler named “C51.EXE”.
●PL/M51 Compiler Path
Type the path that contains the PL/M51 Compiler named “PLM51.EXE”.
●Linker Path
Type the path that contains the Linker named “L51.EXE”.
●Include Path
Type the path that contains include files that are provided with the standard
library.
●Library Path
Type the path that contains the compiler library.
●Assembler Options
Type the Assembler options separated by space.
●C Compiler Options
Type the C Compiler options separated by space.
●PL/M51 Compiler Options
Type the PL/M51 Compiler options separated by space.

●Linker Options
Type the Linker options separated by space.
●Delay
Type the interval between two step when step continually.
●Clear Code
Clear the code buffer when load the program code.

Suggested Compilers
Franklin(Keil) tool chain C51(*.OMF) versions V3.20 or above
C Compiler Version 3.20 or above
Assembler Version 4.86 or above
PL/M51 Compiler Version 1.40 or above
Linker Version 3.11 or above

Build Project
Select main menu “Project”, then choose the submenu “Build Project” to
compile project (according the options made in the previous session). If no
error, ”Build” window displays the message “Build OK” and the system loads
the code and downloads the code to the emulator. Otherwise, “Build” window
displays error messages. You can locate the error line in the source window
when double-click the error message in the “Build” window, modify the error
and build project again.
Note: Please make sure that all used compiler files.

Load Code
Select main menu “File”, then choose the submenu “Load as”.

Source Level Debugging
Choose any submenu of main menu “Run” according to your need. Source
Level Debugging works only with files in Intel OMF or Extended OMF format
which contain necessary debugging messages including LINE numbers..
Debugging from Source Window
Select main menu “File”, then choose the submenu “Load File” to open source
window. In source window you can view the source file, start and stop
emulation, set breakpoints, step over and trace into, and watch variables. You
can also modify the source file and rebuild the project.
NOTE: Programs start in assembly code and not in main() in C source
level debugging. You can set breakpoints in source window and run to
breakpoint.

Mixed Source and Disassemble Window
Select main menu “View”, then choose the submenu “Source and
Disassemble” to open the window that displays the program source

intermixed with the assembly language compiled for each source line.

Setting Breakpoint
Select main menu “Run”, then choose the submenu “Insert/Remove
Breakpoint” or move the mouse to the left of the source line and double-clik
the mouse. If a breakpoint is set, a breakpoint symbol will appear to the left
margin of the source line.
Setting breakpoint must be done after loading code. If you try to set a
breakpoint on a non-executable statement, an invalid breakpoint symbol
appears.

(picture 4)

Emulating to Breakpoint
Select main menu “Run”, then choose the submenu “Go”. (When the
breakpoint is reached, emulation halts before the instruction at the breakpoint
address is executed). When emulating, you can open windows including
every source window, disassemble window, mixed source and disassemble
window. You can switch the window from one to another.

Stepping Source
This function allows single step of the program in source or assembly mode,
including “trace into”, ”step over”, ”run to cursor”, “Go over return”, “trace into
continually” and “step over continually”.

View Register

Select main menu “Window”, then choose the submenu “CPU” to open CPU
window in which you can view and modify the register. You can also open the
Peripheral Window and Bit Window.

View Memory
Memory includes internal Ram, XDATA (external data memory) and Code
(program memory). Select main menu “Window”, then choose the submenu
“Internal Ram” to open internal Ram window. The XDATA and Code are
displayed in “Output” window.

View Variables
Select main menu “Window”, then choose the submenu “Variable” to open the
window in which you can watch and modify the parameters and variables
when emulating.

Discussion about Function
Summarization

The goal of this chapter is to introduce you to the TOPICE user interface that
provides a quick and convenient way to create, edit a project, build a project,
load the object file and download the code to the emulation.

Menu File
From the File menu, you can open source files:
New File
Create the source file saved as a file with extension name “.asm”,”.c” or
“.plm”.
Open File...
Open the existing file.
Save File
Save the editing file.
Save File as...
Save the editing file with another name.

(picture 5)

You can also load object file:
Load as
Load the object file with format:
 Intel – OMF51 and Extension OMF51 (Franklin/Keil)
 Intel – Hex
 Binary

(picture 6)
●Type
Choose the format of file.
●File
Display the name of the selected file.
●Start Address
The start address in the buffer from which code will be loaded.
Save as
Save the code buffer into a file with format:
 Intel – Hex
 Binary
Exit
Exit the system.

Menu Edit
The Edit menu offers the following commands:
Undo
Reverse previous editing operation.
Redo

Repeats previously reversed editing operation.
Cut
Deletes data from the document and moves it to the clipboard.
Copy
Copies data from the document to the clipboard.
Paste
Pastes data from the clipboard into the document.
Delete
Deletes data from the document.
Select All
Selects the entire text within the active document.
Find
Finds the pattern within the active document.
Find Next
Finds the next occurrence of the pattern within the active document.
Find Previous
Finds the previous occurrence of the pattern within the active document.
Replace...
Replaces the pattern for other one within the active document.
Note: When emulating, any editing operation is disallowed in source
window.

(picture 7)

Menu Run
Choose commands in the Run menu to start and stop emulation or to step.
You can switch the window between source window, disassemble window,
source and disassemble window. When emulating, click the right mouse to
pop up the menu to switch window.

(picture 8)

Start Emulation
Emulation is started with following commands followed as:
GO
Start the emulation and halt at a breakpoint address.
Trace into
This function allows single step of the program in source or disassemble
window. If a step begins on a source statement containing a function call for
which source is available, it steps into the source for that function and stops at
the first executable line in the function.
Step over
This function allows single step of the program in source or disassemble
window. If a step begins on a source statement containing a function call for
which source is available, it steps over the source for that function and stops
at the first executable line in the function.
Run to cursor
Start the emulation and halt at the executable line the cursor locates.
Go over Return
Execute from the current Program Counter and halt at the first executable
statement or line (in the calling function) after a return.
Run
Start the emulation freely and ignore any breakpoint.
Trace into continually
This function allows you to trace into continually the program in source or
disassemble window.
Step over continually
This function allows you to step over continually the program in source or
disassemble window.

Insert/Remove Breakpoint
If the line where the cursor is blinking has been set as a breakpoint, this
function allows to remove the breakpoint; otherwise, insert a breakpoint. You
can also insert/remove a breakpoint with the mouse. Move the mouse to the
left of the line and double-click.

(picture 9)

Remove All Breakpoints
Remove all program breakpoints and XDATA breakpoints. Refer the menu
“option” and submenu “set break”.

(picture 10)

Halt and Stop Emulation
Halt
Halt the emulation and display the position, you can continue emulating from
here.

Stop
This ends the emulation.

(picture 11)

Menu Project
New
Opens the New Project dialog box to create new compiling project.
Open
Displays the Open Project dialog box to open an existing project.
Edit
Displays the Edit Project dialog box to add or remove files in current project.
Close
Close the project, stop the emulation, and close all opened windows.
Build Project
Compile the project according to options, generate a OMF-format file with
extension “.omf”. If no error, load this file and download the code to the
emulator.
Download Code
Download the code to the emulator.

(picture 12)

Menu Option
This function allows you to make setting of software and hardware of
emulator.
Select MCU
Select the type of MCU.

(picture 13)
If the MCU has internal ROM, the P0 and P2 are available as I/O when PC is
in the internal program memory and serves as a multiplexed address/data bus
when PC is in the external program memory.

Set Emulator
Set the option of emulator.

(picture 14)
●Clock
Select the emulator clock.
●ROM
 Emulator: use the program memory in emulator.
 Target: use the program memory in user board.
●Internal Ram
 Emulator: use the data memory in emulator.
 Target: use the data memory in user board.
●Set I/O
 Set P3.6, P3.7

Set Break
Set the option of break
●Page “Set”
Add or delete breakpoints of program/XDATA. When the statement
reads/writes the XDATA at the address where a breakpoint is set, the
emulation halts.

(picture 15)
●Breakpoint
List the address of breakpoints.
●Choose
 Program: list the program breakpoints
 Read/Write XDATA: list the XDATA breakpoints
●Offset
Type the address
●ADD
Set breakpoint at the current address
●Remove
Remove the breakpoint at the highlighted address

●Page “Enable”

(picture 16)

●Page “Trigger Mode(External Break)”

(picture 17)
The emulator has four external break probe. When trigger condition is satified ,
emulation halts.

Enviroment
Set option of compiler.

(picture 18)
●Assembler Path
Type the path that contains the Assembler named “A51.EXE”.
●C Compiler Path
Type the path that contains the C Compiler named “C51.EXE”.
●PL/M51 Compiler Path
Type the path that contains the PL/M51 Compiler named “PLM51.EXE”.
●Linker Path
Type the path that contains the Linker named “L51.EXE”.
●Include Path
Type the path that contains include files provided by the standard library.
●Library Path
Type the path that contains the compiler library.
●Assembler Options
Type the Assembler options separated by space.
●C Compiler Options
Type the C Compiler options separated by space.
●PL/M51 Compiler Options
Type the PL/M51 Compiler options separated by space.
●Linker Options

Type the Linker options separated by space.
●Delay
Type the interval between two steps.
●Clear Code
Clear the code buffer before loading code.

Refresh XDATA
No useful, you can ignore it.

(picture 19)

Load Target ROM
If target board has an external ROM with program code, you can use this
function to load code and disassemble the code, then you can emulate target
ROM in disassemble window.
How to use?
Take 89C51 for example.
If user has 8K program code, 4K in the ROM of 89C51 and another 4K in the
external ROM. Use this function to load external ROM before emulation,.
When emulating, if PC is larger than 4K, you can view in the disassemble
window. Follow as:
1. Select the type of CPU: 8xC51
2. Set the option of emulator, select ROM: Target
3. Set environment , uncheck the Box ”Clear code buffer when loading code”
4. If you want to debug the source level for 4K in the ROM of 89C51,you must

load the OMF file.(create a project and build)
5. Before emulation, you first load the 4K code in the ROM of 89C51, then use

this function to load 4K code in the external ROM.
6. Power on the target board.
Note: Load 4K external code, Size of Target ROM is 4+4=8K

(picture 20)

Work Offline
Software simulation only.

Menu View
ToolBar
Show/Hide the toolbar.
StatusBar
Show/Hide the statusbar.
Source and Disassemble
Open the Mixed Source and Disassemble window.

(picture 21)
Disassemble
Open the Disassemble window.

(picture 22)
Output
Show/Hide the “Output” window which is composed of Build, XDATA and
Code subwindow.s
Build window shows the message of building a project. If no error, the window
displays the correct compiling and linking messages. In the meantime, the
system generates the OMF file and load it, then download code to emulation if
working online.

(picture 23)
If the compiled file has error, the window shows error messages and the lines
where the error occurs.

(picture 24)

XDATA window shows external RAM. After the emulation halts, the XDATA
refreshes.

(picture 25)

Code window shows the executed code.

(picture 26)

Locate
Locate to the address in the “Locate to Address” box.

(picture 27)
Search
Locate to the address where the string in the “Text to search” can be founded.

(picture 28)
Search Next
Go on searching the address which the string in the “Text to search” box can
be founded.

Menu Window

Cascade
Arranges open debugging windows in an overlapping pattern so that the title
bar of each window is visible.
Title Horizontally
Arranges opened debugging windows side by side so that all windows are
visible.
Title Vertically
Arranges opened debugging windows side by side so that all windows are
visible.

CPU
Open the CPU window in which value of all registers are displayed. Changed
values are addressed with red color.

(picture 29)

Modify Dialog Box

(picture 30)
●New Value
Type a new value.

Bit
Open the Bit window that displays the value of bit-addressable locations.

(picture 31)

Stack
Open stack window.

(picture 32)
Peripheral
Opens the Peripheral window.

(picture 33)

Variable
Open the variable window that can be used to inspect or edit variables.
If you want to watch the value of DATA, IDATA and XDATA, you can add an
untyped variable as:

D：XXXX DATA Value in address “XXXX”
I：XXXX IDATA Value in address “XXXX”
X：XXXX XDATA Value in address “XXXX”

(picture 34)
●Add
Add a variable which can be compose of C expression, struct or array.
●Edit
Edit a variable. Use it to change the type of variable which is not defined.
●Delete
Delete a variable.
●Delete All
Delete all variables.
●Modify
Modify the value of the variable.
●Hexadecimal Display
The value is displayed in Hexadecimal.

When debugging C51 file, if you want to display value of variable with type
“pointer”, you can select the type “array”. For example, for variable “char*
Name” you can use “Name[0]” to “Name[n]”, instead of “*Name”.

Internal RAM
Open the internal RAM window.
You can type the key “0-----9” and “A----F” in the HEX region.
Using key “Tab” switches between two regions.

(picture 35)

Project Parameters
Open the internal Project Parameters window that shows the structure of
OMF file. You can use “drag/drop” to add the variable into Variable window.

(picture 36)

Appendix

Error Message
1. Not a project file
Because TOPICE software creates a project file in special format, you must

close the project or quit system normally to save the project file, Otherwise, an
error may occurs.
2. There is an error type file in project
There are three correct types of file in project, C51 file with extension name
“.c” , assembly file with extension name “.asm” and PL/M51 file with extension
name “.plm”.
3. Not an OMF51 File
You can create a project including your files and build the project to generate
a correct OMF51 file.
4. Invalid type value
Type the C type value. For example:
 In Decimal, you can type: 1234, 45, 78, 09, etc.
 In Hexadecimal, you can type: 0x1234, 0x6b, 0xabcd, etc.
 Float: 12.345, 0.567, 2e-5, 3e+10
 Long: 0x12345678L
5. Code size is too large
For example, if the code size is 4.5K while the MCU is AT89C51, this warning
will happen when loading the OMF file.
6. Can not load all debug messages
If you debug a PL/M file, the name must be same as the file name.
Example: Pdemo.plm , you must write as:
 PDEMO: do;

 end PDEMO;

